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Abstract. A new scheme for consmcting approximate effective electmn potentials within 
densily-functional theory is proposed. The scheme consists of calculating lhe effective potential 
for a series of reference systems, and then using these potentials to consmct the potential of 
a general system. To make contact with the reference system the neutral-sphere radius of each 
atom is used. The scheme can simplify calculations with partial wave methods in Ihe atomic- 
sphere or muffin-tin approximation, since potential parameters can be precalculated and then for 
a general system obained through simple interpolation formulas. We have applied the scheme to 
consmct elecvon potentials of phonons, surfaces, and different crystal sVuchms of silicon and 
aluminium atoms, and found excellent agreement with the selfconsistent effective potential. 
By using an approximate total elecvon density obtained from a superposition of atombased 
densities. the energy rero of the corresponding effective potential can be found and the energy 
shiRs in the mean patential belween inequivalent atoms can therefore be directly estimated. This 
approach is shown to work well for surfaces aod phonons of silicon. 

One route that seems promising in order to construct computationally efficient ab initio 
schemes for calculating total energies and forces of solids is to exploit the variational 
properties of density-functional theory [I]. We have shown earlier how the total electron 
density can be decomposed into a superposition of transferable atom-based densities for 
metals and semiconductors [2,3]. When such densities are used to generate an input density 
for the Harris functional [4, 51, excellent total energies are obtained for surfaces, phonons 
and structural differences [6, 31 due to the fact that the Harris functional is stationary in the 
density. In this way the self-consistency loop is avoided. It is the purpose of the present 
report to show how the variational nature of density-functional theory can be exploited even 
further by working with both approximate densities and potentials simultaneously. 

The Hohenberg-Kohn density functional can be generalized to a functional E[n, U] 
which depends on both the density n and the potential U [5,7] and which is stationary with 
respect to independent variations of the density and the potential. The general, functional 
can be written 

where 6. denotes the eigenvalues generated by the potential U, and where E&] and 
E&] are the electrostatic and exchange-correlation energy functionals, respectively. If 
the potential is restricted to be a functional of the density, the Hohenberg-Kohn functional 
or the Harris functional appear as special cases [7]. The stationarity property of the general 
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functional with respect to variations in the potential can be utilized to construct efficient 
schemes for evaluation of total energies and Hellman-Feynman forces [3]. In the following 
we shall describe one such scheme which has its root in the effective-medium theory [7]. 
The scheme applies to situations in which the kinetic energy can be calculated within 
the muffin-tin or atomic-sphere approximation (ASA) with spherically symmetric potentials 
within the atomic spheres. The idea is to use self-consistently calculated potentials from a 
series of reference systems which we choose here to be a hulk crystal with varying lattice 
constant. For a given atom in a general system the potential within the atomic sphere around 
the atom is then approximated by the potential in the reference system with an appropriate 
lattice constant. The lattice constant of the associated reference system is determined by 
the requirement that a neutral sphere around the atom should have the same radius in the 
system under study and in the reference system. 

The neutral sphere is a sphere containing three (four) electrons in the case of aluminium 
(silicon) in the pseudo-potential scheme. If the approach described here is combined with 
the density construction of [a] where the total electron density, n(r ) ,  is approximated by a 
superposition of atom-based densities, An-,,,, positioned at each atomic site, R,, 

then the NS radius can be obtained directly, or simple interpolation formulas can he made 
h m  which the NS radius can be obtained with high accuracy [6, 31. 

We have used this scheme to calculate the effective potential of silicon and aluminium 
atoms in different configurations. For silicon we use the diamond structure and for 
aluminium the FCC structure as reference systems. The lattice parameter is regarded as 
a parameter which can be varied in order to find a good approximation for the potential. 
To calculate the effective potentials we use a self-consistent plane-wave pseudo-potential 
program, with a 12 Rydberg cut-off for the plane-wave basis set. With this cut-off, we find 
the lowest-energy configuration of silicon to be the diamond lattice with lattice constant 
1 0 . 1 7 ~ ,  and for aluminium the F E  lattice with lattice constant 7.4800. 

As test systems for silicon we consider the diamond longitudinal phonon at the X point 
(denoted LAO(X) and frozen at the displacement 0.02 in units of the lattice constant), the 
diamond (100) surface, and the FCC smcture with a lattice constant of 7.18m. Similarly, 
for aluminium, we use the FCC longitudinal phonon at the X point (denoted L(X) and 
displacement 0.02), the FCC (100) surface, and the diamond structure with a lattice constant 
of 11.05 Q. These six structures cover the two elements in quite different surroundings, 
and if the potential construction works for these situations a high degree of transferability 
is guaranteed. 

As the first test system, we consider silicon in the PCC structure. As noted in the 
introduction the way we make contact between the test system and the reference system is 
through the NS radius. In the FCC structure the NS radius is almost equal to the WignerSeitz 
(ws) radius, while the NS radius is substantially smaller than the WS radius in the diamond 
structure. This difference is due to the large regions in the diamond lattice which contain 
almost no charge and therefore are not included in the neutral sphere. In figure 1 we show 
the local part of the self-consistent effective potential of the FCC test system compared to that 
of the reference system with the same NS and WS radius as the FCC test system, respectively. 
Clearly the potential of the reference system chosen according to the NS criterion gives by 
far the best approximation to the FCC potential. 

In order to quantify the difference in the potentials, we introduce the RMS error a, 



Comtruction of transferable electron potentials 5417 

120.0 

80.0 

h 

2 
N 40.0 
m 
Y 

L v ' 0.0 
N L  

-40.0 

-80.0 
I 

- fcc 
ref. NS 
ref. WS _ _ _ _  /I , 

- fcc 
ref. NS 
ref. WS _ _ _ _  

/ 

L 
t 1 .o 2.0 

radial distance (a,) N S  

F I w  1. The figure shows the self-consistent effective potential (i.e. r2v ( r ) )  of silicon in the 
FCC svucture (solid line) and tM of the diamond reference system wilh the same NS radius 
(dotted line) and ws radius (dashed line), as B function of the radial distance The potentials have 
been aligned such that the mean potential within the ws sphere is Em. The WO vertical lines 
show lhe NS and ws radius of lhc FCC system, respectively. 

defined by 

where ~w is the ws radius of the test system, and the two potentials are aligned such that they 
have the same average within the sphere. To get an estimate of the error in the potentials 
due to the finite planewave basis set, we have compared one of the reference potentials of 
silicon with that of an 18 Rydberg calculation. We find a RMS error of U = 0.06 eV, so 
this is the level of accuracy we ideally can obtain. 

In figure 2 we show the RMS error between the potential of the FCC test system and 
the diamond reference system as a function of the ws radius (i.e. as a function of Lattice 
constant) of the diamond lattice. We see that optimally the reference system should be 
chosen with a ws radius of 3.18 Q. We note that this is not at all close to the WS radius 
in the Fcc test system (SW = 2.806 ao). In the ASA the reference diamond structure is 
often embedded in a B c c  structure with twice the number of spheres where only half of 
them contain an atom, and the others are empty. For this construction the sphere radius is 
a factor 2'13 smaller than thews radius, and the reference system where this smaller sphere 
equals the FCC W s  radius is given by sw = 3.53 Q, which still is far from the optimal 
reference system. However, the reference diamond lattice with the same NS radius as the 
FCC test system has a ws radius of 3.178 Q. and is therefore almost exact in the optimal 
reference system. This is not just a coincidence, since for all test systems investigated we 
have found this to be the case. 

In table 1 we show the minimal RMS error between the potential of the six test systems 
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Figure 2. The figure shows the RMS emr (equation (2)) between the effective potential of silicon 
in the FCC structure and the potential in the diamond reference system as a funcdon of the ws 
radius of the reference systeaThe three crosses show the ermr when the reference system has 
the same ws radius, NS radius and BCC ws radius (diamond with empty sphcres) as the FCC 
system, respectively. 

Table 1. Calculated L M ~ O  potential p a r a ”  for the three pseudopotentials of figure 1. For 
each angular component the appropriate non-local contribution to the potential ha been added, 

Potential C, - C, (eV) As (ev) Ap (eV) 

sc Fcc 10.968 1.566 1.358 
Ref, NS 10.961 1.565 1.355 
Ref. ws 10.998 1.703 1.475 

and the reference system, compared to the error when the reference system is chosen to have 
the same NS radius or the same ws radius as the test system. It is evident from the table that 
using the reference potential chosen according to the NS criterion is almost optimal, while 
the ws criterion is far from optimal. It should be noted that if the integral in equation (2) 
were done within the neutral sphere instead of within the ws sphere, the NS criterion would 
give even smaller errors. 

In order to estimate how much the errors induced by the approximations for the potential 
will affect the total energy, we show in table 2 the value of LMTO potential parameters 181 
for the three potentials of figure 1. The potential parameters are calculated by solving 
the radial Schrodinger equation at a fixed energy for the s and p angular component 
(6” = {13.22,18.96)), with the energy chosen at the centre of gravity of the occupied 
part of the Fcc band. The accuracy of the potential parameters directly reflects the accuracy 
of the corresponding oneelectron bands, and thereby the oneelectron band energy. As 
seen from table 2 the potential parameters obtained with the NS criterion are in excellent 
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agreement with the self-consistent parameters, while the potential parameters obtained with 
the ws criterion are more than 10% off. 

Table 2. The first row shows the minimal RMS ermr between the potentials of the six test systems 
and the reference system. The second and third row show the RMS enor when the reference 
system is that with the Same NS and ws radius as the test system, respectively. The first three 
columns show the  em^ for Ihe three silicon test systems; the rcc shucture, the (104) diamond 
surface and the diamond longitudinal phonon at Ihe X point ( u d X ) )  with a displacement of 0.02 
in unifs of the lattice constant. me last lhRe columns show the errors for the three aluminium 
test systems; the diamond shucture, the Rc (100) surface and the FCC longitudinal phonon at 
the X point (UX)) with displacement 0.02 in units of the lattice constant. 

Silicon Aluminium 

FCC (100) LAo(X) Diamond (100) UX) 

mmin (eV) 0.15 0.08 0.04 0.11 0.05 0.028 
uNS (eV) 0.15 0.20 0.08 0.24 0.10 0.034 
mws (eV) 1.49 1.22 0.34 0.89 0.48 0.042 

Until now we have aligned the average potentials within the ws sphere. However, for 
a surface calculation the mean potential at the surface is shifted relative to the bulk and 
we need to describe this shift in order to get a good estimate of the overall potential. At 
first sight the problem seems hard to overcome since the mean potential is arbitrary for 
a bulk calculation due to the divergence of the electrostatic potential [9]. However, it is 
possible to circumvent this problem if we use the potential constructed from a superposition 
of atom-based densities. We will name this potential the Harris potential since this is the 
effective potential used in the Harris functional, when the input density is obtained from 
a superposition of atom-based densities. We know from previous studies that when this 
potential is used as an input to the Harris functional, excellent total energies are obtained 
for phonons, surfaces, and different crystal structures [2, 61. 

The electrostatic part of the Harris potential V 2 ~ s  can in a natural way be divided into 
a sum over atom-based electrostatic potentials uel(r) each given by the sum of one ionic 
potential vio. and the Hartree potential derived from one atom-based density Anamm 

With this construction the Ilr divergence of the electrostatic potential is avoided, since the 
atom-based density decreases exponentially, and thereby fixes the vacuum level. Note that 
a consequence of this is that within this approximation all surfaces of a solid will have the 
same work function. In contrast to the total energy the work function is not variational in 
the density, and we cannot expect the density m u t z  equation (3) to produce an accurate 
estimate. 

Having established a common energy zero for all Harris potentials we can now proceed 
to determine the energy shifts of the mean potential for atoms in different environments. 
In figure 3 the solid curve indicates the mean Harris potential for silicon in the reference 
diamond structure as a function of the NS radius. Also shown are the actual shifts of both 
the Hanis and the self-consistent potential at the three principal surfaces and the potential 
shifts of the two inequivalent atoms in the LAO(X) phonon. These potential shifts are 
marked in the figure at the calculated NS radii of the atoms. We see that the potential 
shift in the reference system compares surprisingly well with the potential shifts in the test 
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Figure 3. The solid c w e  shows the mean Harris potential. within the NS, of the diamond 
reference system as a function of the NS radius. The tuv first crosses show the shift in the mean 
Harris potential for the two inequivalent atoms in the uo(X) phonon, al lheir NS radii. The last 
three crosses show the shin in the mean potential al the diamond (I 1 I). (1 IO) and (100) surface, 
respectively. The circles show the shifts for the corresponding selfconsistent potentials. The 
dotted line shows the mean potential in the equilibrium diamond lattice. 

systems. On the average, the shift of the Hanis potential is about 4% higher than for the 
self-consistent potential, and the shift of the reference system is about 8% higher than for 
the Harris potential, 

Table 3. The RMS e m r  of potential differences (equuion (2)) for a silicon atom a~ the (100) 
surface. The differences are belween the selfsonsistent surface potential V". the Harris 
potential VH- for the surface with the density construction equation (3) and the analogous 
potentials in the diamond reference system chosen m r d i n g  to the neutral sphere (NS) criterion. 

y x  - yH.rrir y" - VZC y X  - v - v  

In table 3 we show the RMS error between the Harris potential and the self-consistent 
potential for a silicon atom at the diamond (100) surface. This is compared to the RMS 
error between the self-consistent surface potential and both the self-consistent and Harris 
potential of the reference system when the reference system is chosen according to the NS 
criterion. As seen from the table the RMs errors are similar for the three potentials, and 
since the total energies obtained using the Harris potential are excellent [6. 31, all three 
reference potentials are accurate enough to be used to calculate total energies. 

In summary we have presented a scheme for obtaining transferable ASA potentials. The 
scheme was applied to six test systems consisting of silicon or aluminium atoms. The 
potentials obtained were in very good agreement with the actual self-consistent potentials, 
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reproducing both the radial variations and the shifts in the mean potential, and when used 
as input to the LMTO method accurate potential parameters were obtained. We expect the 
method to be valuable for constructing new approximate total energy schemes, and it is 
currently used in a new formulation of an effective-medium tight-binding model for silicon 
131. 
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